Bayesian, and non-Bayesian, Cause-Specific Competing-Risk Analysis for Parametric and Non-Parametric Survival Functions: The R Package CFC
نویسندگان
چکیده
The R package CFC performs cause-specific, competing-risk survival analysis by computing cumulative incidence functions from unadjusted, cause-specific survival functions. A high-level API in CFC enables end-to-end survival and competing-risk analysis, using a single-line function call, based on the parametric survival regression models in survival package. A low-level API allows users to achieve more flexibility by supplying their custom survival functions, perhaps in a Bayesian setting. Utility methods for summarizing and plotting the output allow population-average cumulative incidence functions to be calculated, visualized and compared to unadjusted survival curves. Numerical and computational optimization strategies are employed for efficient and reliable computation of the coupled integrals involved. To address potential integrable singularities caused by infinite cause-specific hazards, particularly near time-from-index of zero, integrals are transformed to remove their dependency on hazard functions, making them solely functions of cause-specific, unadjusted survival functions. This implicit variable transformation also provides for easier extensibility of CFC to handle custom survival models since it only requires the users to implement a maximum of one function per cause. The transformed integrals are numerically calculated using a generalization of Simpson’s rule to handle the implicit change of variable from time to survival, while a generalized trapezoidal rule is used as reference for error calculation. An OpenMP-parallelized, efficient C++ implementation – using Rcpp and RcppArmadillo packages – makes the application of CFC in Bayesian settings practical, where a potentially large number of samples represent the posterior distribution of cause-specific survival functions.
منابع مشابه
The Effect of Time-dependent Prognostic Factors on Survival of Non-Small Cell Lung Cancer using Bayesian Extended Cox Model
Abstract Background: Lung cancer is one of the most common cancers around the world. The aim of this study was to use Extended Cox Model (ECM) with Bayesian approach to survey the behavior of potential time-varying prognostic factors of Non-small cell lung cancer. Materials and Methods: Survival status of all 190 patients diagnosed with Non-Small Cell lung cancer referring to hospitals in ...
متن کاملInvestigating the Theory of Survival Analysis in Credit Risk Management of Facility Receivers: A Case Study on Tose'e Ta'avon Bank of Guilan Province
Nowadays, one of the most important topics in risk management of banks, financial, and credit institutions is credit risk management. In this research, the researchers used survival analytic methods for credit risk modeling in terms of the conditional distribution function of default time. As a practical task, the authors considered the reward credit portfolio of Tose'e Ta'avon Bank of Guilan P...
متن کاملDeep Multi-task Gaussian Processes for Survival Analysis with Competing Risks
Designing optimal treatment plans for patients with comorbidities requires accurate cause-specific mortality prognosis. Motivated by the recent availability of linked electronic health records, we develop a nonparametric Bayesian model for survival analysis with competing risks, which can be used for jointly assessing a patient’s risk of multiple (competing) adverse outcomes. The model views a ...
متن کاملمقایسه مدلهای بیزی پارامتریک در تحلیل عوامل مؤثر بر میزان بقای بیماران مبتلا به سرطان معده
Background & Objectives: The Cox proportional-hazards regression and other parametric models model have achieved widespread use in the analysis of time-to-event data with censoring and covariates. However employing Bayesian method has not been widely used or discussed. The aim of this study was to evaluate the prognostic factors in using Bayesian interval censoring analysis.Methods: This cohort...
متن کاملComparison of Random Survival Forests for Competing Risks and Regression Models in Determining Mortality Risk Factors in Breast Cancer Patients in Mahdieh Center, Hamedan, Iran
Introduction: Breast cancer is one of the most common cancers among women worldwide. Patients with cancer may die due to disease progression or other types of events. These different event types are called competing risks. This study aimed to determine the factors affecting the survival of patients with breast cancer using three different approaches: cause-specific hazards regression, subdistri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017